The implicit continuous-fluid Eulerian containment code has been extended to treat the hydrodynamics of high-energy excursions that involve shock-wave propagation, large amplitude free-surface motion, and fluid cavitation. In the analysis, an implicit-time-integration scheme is used to solve the Eulerian hydrodynamic equations. Stress-continuity equations are employed to treat the free-surface boundary conditions. Also, a simple equation of state is developed to model a cavitated fluid. As a result, numerical computations can be carried out readily and accurately without using complementary mechanisms such as artificial viscosities, mesh regularization, and rezoning. For the purpose of illustrating the advantages of the formulation, code simulations of the U.K./Italy code validation experiments are made. Good agreement between the analytical and experimental results are shown. This indicates that analyses of high-energy excursions involving shock-wave propagation and fluid cavitation are successfully performed with a Eulerian hydrodynamics code.