ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Ronald F. Kulak
Nuclear Technology | Volume 51 | Number 3 | December 1980 | Pages 378-387
Technical Paper | Mechanics Applications to Fast Breeder Reactor Safety / Reactor | doi.org/10.13182/NT80-A32574
Articles are hosted by Taylor and Francis Online.
Evaluation of the structural safety of reactors often involves the analysis of various types of fluid-structural components interacting in three-dimensional space. For example, in the design of a pool-type reactor several vital in-tank components such as the primary pumps and the intermediate heat exchangers are contained within the primary tank. Typically, these components are suspended from the deck structure and largely submersed in the sodium pool. Because of this positioning these components are vulnerable to structural damage due to pressure wave propagation in the tank during a hypothetical core disruptive accident. To assess the transient response of these components, it is necessary to perform a dynamic analysis in three-dimensional space that accounts for the fluid-structure coupling. A formulation for a three-dimensional Lagrangian hydrodynamic element was applied to the above safety problem. A model that has many of the salient features of this fluid-structural component system was developed and then analyzed using the NEPTUNE computer code. The primary tank and the in-tank component were modeled as deformable elastoplastic structures, the sodium pool as an inviscid, compressible fluid, while the deck was taken to be rigid and fixed in space. The transient response of the model showed that although the pressure waves loaded the in-tank component so that it moved toward the primary tank, they also loaded the primary tank and moved it away from the component preventing structural damage due to impact between the component and tank.