ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
P. K. Job, M. Srinivasan, V. R. Nargundkar
Nuclear Technology | Volume 51 | Number 1 | November 1980 | Pages 87-96
Technical Note | Reactor | doi.org/10.13182/NT80-A32560
Articles are hosted by Taylor and Francis Online.
A series of subcritical multiplication experiments was conducted at Purnima Laboratories, Trombay, on a thick BeO-reflected 233U (98.2 wt% enrichment) uranyl nitrate solution system. The core tank was a rectangular parallelepiped of 0.11− × 0.11−m2 sectional area attached to the bottom of a glove box. Multiplication measurements were carried out with uranyl nitrate solutions in the uranium concentration range of 25 to 150 kg/m3 corresponding to H/233U ratios in the range of 1200 to 200. The maximum quantity of 233U-enriched uranium used was 0.12 kg and the corresponding multiplication was ∼5. Boric acid solutions, equivalent in terms of thermal-neutron absorption to the uranium solutions, were used to eliminate the unmultiplied neutron background and to calibrate the neutron detection system. Extrapolated critical heights determined from plots of inverse multiplication were used to obtain the keff of the subcritical assembly with the help of the Trombay Criticality Formula. Absolute multiplication and keff were also deduced independently from the observed multiplication data relative to a reference dummy core. The experimental keff results are found to be in good agreement with detailed transport theory and Monte Carlo calculations.