ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
J. Nagashima, D. G. Andrews
Nuclear Technology | Volume 50 | Number 2 | September 1980 | Pages 124-135
Technical Paper | Reactor | doi.org/10.13182/NT80-A32538
Articles are hosted by Taylor and Francis Online.
In this paper, the concept of information divergence, based on Kullback’s information measure, is introduced into reactor noise analysis. Information divergence, as introduced by Kullback, is the total average information measuring the separation or dissimilarity between two classes of statistical populations. A new species of information divergence is proposed that applies information divergence theory to stochastic processes in general and the reactor noise process in particular. Using this information divergence, the pattern discrimination of reactor noise for a subcritical reactor is studied. Results show that the new information divergence provides a direct quantitative measure of differences between two noise patterns in cases where such a discrimination is not possible from a direct comparison of conventional correlation functions. Functions based on the new information divergence and conventional correlations are proposed for potential applications. These functions are presented as alternative approaches for pattern recognition methodologies of reactor noise used in reactor diagnostics.