ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
S. K. Bhattacharyya, J. A. Morman, R. G. Bucher, D. M. Smith, W. R. Robinson, E. F. Bennett
Nuclear Technology | Volume 50 | Number 3 | October 1980 | Pages 197-218
Technical Paper | Reactor | doi.org/10.13182/NT80-A32524
Articles are hosted by Taylor and Francis Online.
A possible accident scenario in a gas-cooled fast reactor (GCFR) is the leakage of secondary steam into the core. A full-scale experimental study of the physics effects of such an accidental condition has been performed on the zero power reactor (ZPR)-9 critical facility at Argonne National Laboratory. Polyethylene foam strips were used to simulate steam for these measurements. The basic neutronics parameters, namely, neutron spectrum, spectral indexes, reactivity worths, 238U Doppler effect, and B4C control rod worths, were measured in the steam-flooded GCFR critical assembly and also in the corresponding dry, reference GCFR assembly. The results of these measurements clearly show the spectrum softening effects on steam entry. For the analysis of the experiments, ENDF/B-IV-based data were used with two-dimensional diffusion theory methods. It was concluded that the values of the primary safety parameters increased upon steam entry relative to the reference dry case. Such an increase would mitigate the effects of accidental steam entry in a GCFR.