ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
R. J. Gehrke, J. I. Anderson*, D. H. Meikrantz
Nuclear Technology | Volume 49 | Number 1 | June 1980 | Pages 165-173
Technical Paper | Nuclear Power Reactor Safety / Analysis | doi.org/10.13182/NT80-A32518
Articles are hosted by Taylor and Francis Online.
A technique for measuring the efficiency of a Ge(Li) spectrometer for gamma-ray sources in “gas bomb” geometries has been developed. The compounds of (CH3)2Se, CH3CH2Br, and CH3I are labeled with 75Se, 82Br, and 131I, respectively. These compounds readily vaporize at reduced pressure. The labeled compounds are flame sealed in small ampoules and the gamma-ray emission rates are measured. The contents of each ampoule are then released into the evacuated gas bomb and the efficiency of the detector for the gas bomb geometry is determined from the emitted gamma rays. The radionuclides of 75Se, 82Br, and 131I emit gamma rays that cover the energy range from 66 to ∼1900 keV without any large gaps. A method is suggested for measuring the efficiency for gas bomb geometries at small detector distances, which minimizes the effect of coincidence summing.