ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
T. V. Krishnan
Nuclear Technology | Volume 49 | Number 1 | June 1980 | Pages 159-164
Technical Paper | Nuclear Power Reactor Safety / Instrument | doi.org/10.13182/NT80-A32517
Articles are hosted by Taylor and Francis Online.
Intensities observed from any sample can be reduced to any desired matrix by using interference free off-peak background as an internal standard. The normalized count IN is given by (Ip/IB) X B’, where Ip and IB are observed peak and background counts and B’, the normalization factor, is the background in the desired matrix. After blank corrections, the relation between the concentration and the intensity is IN = kC (for low concentrations), log IN = a log C (for intermediate concentrations), and log IN = a log C -b(log C)2 (for high concentrations), except when B’ is too small or too large. Adjustment of B’ is equivalent to altering experimental conditions. The second-degree curve can also be linearized by plotting log IN = log IN + b(log C)2 versus log C, or (log IN/ log C) versus log C. Analysis can be done by evaluating a and b from two standards and solving for log C. Transformation of this second-degree equation to the Siedel-Lomakin type of curve, the use of x-ray fluorescence as an absolute method of analysis without standards, with only the unknown sample and two dilutions, and the modification of influence coefficient method of Rasberry and Heinrich to a binary form consisting of only the element of interest and the matrix, all showed that such a unified approach enables analysis of all types of samples with standards in any available matrix.