ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
M. V. Ramaniah, H. C. Jain, S. K. Aggarwal, S. A. Chitambar, V. D. Kavimandan, A. I. Almaula, P. M. Shah, A. R. Parab, V. L. Sant
Nuclear Technology | Volume 49 | Number 1 | June 1980 | Pages 121-128
Technical Paper | Nuclear Power Reactor Safety / Chemical Processing | doi.org/10.13182/NT80-A32513
Articles are hosted by Taylor and Francis Online.
Isotope Dilution Alpha Spectrometry (IDAS) and Reverse Isotope Dilution Alpha Spectrometry (RIDAS) have been developed for determining the concentration of plutonium in the irradiated fuel dissolver solution. The method exploits 238Pu in IDAS and 239Pu in R-IDAS as a spike and provides an alternative method in the event of nonavailability of 242Pu, which is required in Isotope Dilution Mass Spectrometry (IDMS). Depending upon the burnup of the fuel, 238Pu or 239Pu is used as a spike to change the 238Pu/(239Pu + 240Pu) alpha activity ratio in the sample by a factor of 10. This change is determined by alpha spectrometry on electro-deposited sources using a solid-state silicon surface barrier detector coupled to a multichannel analyzer. The validity of a simple method based on the geometric progression decrease for the far tail of the spectrum to correct for the tail contribution of 238Pu (5.50-MeV) peak to the low energy 239Pu + 240Pu (5.17-MeV) peak is established. Results for the plutonium concentration on different irradiated fuel dissolver solutions with burnup ranging from 1000 to 100 000 MWd/tU are presented and compared with those obtained by IDMS. The values obtained by IDAS or R-IDAS and IDMS agree to within 0.5%.