ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
M. V. Ramaniah, H. C. Jain, S. K. Aggarwal, S. A. Chitambar, V. D. Kavimandan, A. I. Almaula, P. M. Shah, A. R. Parab, V. L. Sant
Nuclear Technology | Volume 49 | Number 1 | June 1980 | Pages 121-128
Technical Paper | Nuclear Power Reactor Safety / Chemical Processing | doi.org/10.13182/NT80-A32513
Articles are hosted by Taylor and Francis Online.
Isotope Dilution Alpha Spectrometry (IDAS) and Reverse Isotope Dilution Alpha Spectrometry (RIDAS) have been developed for determining the concentration of plutonium in the irradiated fuel dissolver solution. The method exploits 238Pu in IDAS and 239Pu in R-IDAS as a spike and provides an alternative method in the event of nonavailability of 242Pu, which is required in Isotope Dilution Mass Spectrometry (IDMS). Depending upon the burnup of the fuel, 238Pu or 239Pu is used as a spike to change the 238Pu/(239Pu + 240Pu) alpha activity ratio in the sample by a factor of 10. This change is determined by alpha spectrometry on electro-deposited sources using a solid-state silicon surface barrier detector coupled to a multichannel analyzer. The validity of a simple method based on the geometric progression decrease for the far tail of the spectrum to correct for the tail contribution of 238Pu (5.50-MeV) peak to the low energy 239Pu + 240Pu (5.17-MeV) peak is established. Results for the plutonium concentration on different irradiated fuel dissolver solutions with burnup ranging from 1000 to 100 000 MWd/tU are presented and compared with those obtained by IDMS. The values obtained by IDAS or R-IDAS and IDMS agree to within 0.5%.