ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Dong H. Nguyen
Nuclear Technology | Volume 49 | Number 1 | June 1980 | Pages 80-91
Technical Paper | Nuclear Power Reactor Safety / Reactor | doi.org/10.13182/NT80-A32509
Articles are hosted by Taylor and Francis Online.
A methodology has been constructed to assess the uncertainty in an output consequence calculated by a large code, due to the uncertainties in input data. A sensitivity analysis was first applied to the code to screen the input variables, leaving only those most affecting the output consequences. The variations of these effective inputs were prescribed by an effective combination of statistical designs, which accounted for the linear, quadratic, and two-factor interaction effects of the inputs on the calculated consequence. A key result of the methodology was the probability density function of the consequence of interest, expressed as a distribution of the Pearson family. The confidence level in calculating a consequence was readily obtained from this distribution function. The methodology was applied to the computer code MELT-IIIA, a major code for the analysis of the hypothetical core disruptive accident in liquidmetal fast breeder reactors, and the confidence level in predicting the time of initial pin failure during a transient overpower accident in the fast test reactor was determined. The sensitivity of this confidence level to the uncertainties of the input data was also shown, thereby establishing the need for well-documented statistical properties of data used in nuclear reactor safety analysis.