ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
H. J. Sutherland, J. E. Smaardyk, L. A. Kent
Nuclear Technology | Volume 49 | Number 1 | June 1980 | Pages 70-79
Technical Paper | Nuclear Power Reactor Safety / Reactor | doi.org/10.13182/NT80-A32508
Articles are hosted by Taylor and Francis Online.
An acoustic, pulse-echo technique has been used as part of the large-scale, sodium/concrete interaction tests being conducted at Sandia Laboratories to measure the penetration of a large pool (up to 186 kg) of liquid sodium (initial temperature as high as 600°C) into a limestone concrete crucible. The acoustic data give information on the penetration, penetration rate, and condition of the sodium/concrete interface during the test. Two distinct attack modes have been seen. The first is chemical, and proceeds initially at ∼i mm/min and is of limited extent. The second is mechanical (spallation), and proceeds more rapidly (∼4 mm/min) and appears to be limited only by the reaction kinetics.