ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—April through June
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from April through May 2024.
Stay tuned for the top stories from the rest of the past year.
Eric J. Karell, Karthick V. Gourishankar, James L. Smith, Lorac S. Chow, Laszlo Redey
Nuclear Technology | Volume 136 | Number 3 | December 2001 | Pages 342-353
Technical Paper | Reprocessing | doi.org/10.13182/NT136-342
Articles are hosted by Taylor and Francis Online.
Results are presented of work done at Argonne National Laboratory to develop a molten-salt-based electrochemical technology for extracting uranium and transuranic elements from spent light water reactor fuel. In this process, the actinide oxides in the spent fuel are reduced using lithium at 650°C in the presence of molten LiCl, yielding the corresponding actinides and Li2O. The actinides are then extracted from the reduction product by means of electrorefining. Associated with the reduction step is an ancillary salt-recovery step designed to electrochemically reduce the Li2O concentration of the salt and recover the lithium metal.Experiments were performed at the laboratory scale (50 to 150 g of fuel and 0.5 to 3.5 l of salt) and engineering scale (3.7 to 5.2 kg of fuel and 50 l of salt). Laboratory-scale experiments were designed to obtain information on the fundamental factors affecting process rates. Engineering-scale experiments were conducted to verify that the parameters controlling process scaleup are sufficiently understood, and to test equipment and operating concepts at or near full scale. All indications are that the electrochemical-based process should be workable at practical plant sizes.