BeH2 could serve as an effective moderator in reducing critical masses in minimum critical mass systems on account of its (n,2n) reactivity bonus and the possibly higher hydrogen atomic density. A parametric study of the variation of keff and critical mass with BeH2 moderator density in the range of 600 to 1000 kg/m3 for the three main fissile nuclides of 235U, 233U, and 239Pu in small spherical thermal assemblies indicates that for 0.40-m-thick BeO-reflected spherical systems with BeH2 moderator of density ≥680 kg/m3 the critical masses are lower than with any other known moderator (such as H2O or CH2). With a moderator of crystalline BeH2 having a density of 780 kg/m3, critical masses are found to be lower than with CH2 by about 15%.