ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
H. Thomas Blair
Nuclear Technology | Volume 49 | Number 2 | July 1980 | Pages 267-273
Nuclear Fuel Cycle | Fuel Cycle | doi.org/10.13182/NT80-A32489
Articles are hosted by Taylor and Francis Online.
A full-scale nonradioactive in-can melter became operational at Pacific Northwest Laboratory in April of 1977. The furnace has six independently controlled hot zones capable of providing 30 kW each at 1200°C and is able to accommodate cans up to 710 mm (28 in.) in diameter and 2.3 m (7ft) tall. New design concepts such as placing the entire can inside the furnace, supporting the can from the bottom, and charging the in-can melter through a water-cooled spout were demonstrated with this equipment. These new concepts have resulted in the elimination both of accumulations of the materials to be melted (batch) on top of the heat-transfer plates in the cans and of unvitrified waste in the top of the can. Melting rates of 100 kg/h (220 lb/h) were attained in 610-mm-diam (24-in.-diam) cans using test batches composed of calcined simulated waste from a nitric acid solution combined with borosilicate glass-forming frit. A 10-day continuous run was made in conjunction with a heated-wall spray calciner to demonstrate the reliability and operability of the equipment. Control of the in-can melting process using only remote monitoring equipment not attached to the can was also demonstrated.