ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Robert P. Schuman
Nuclear Technology | Volume 49 | Number 2 | July 1980 | Pages 223-232
Nuclear Fuel Cycle | Fuel Cycle | doi.org/10.13182/NT80-A32485
Articles are hosted by Taylor and Francis Online.
There has been considerable controversy concerning the alpha waste and the proliferation hazards of breeder reactors and chemical reprocessing. In order to compare the hazards of different fuel cycles, calculations of alpha waste production and fuel composition have been made for 235U-burning light water reactors (LWRs) and Canadian Deuterium Uranium (CANDU) natural uranium, heavy water reactors using the throw-away fuel cycle, for LWRs with plutonium and uranium recycle, for liquid-metal fast breeder reactors (LMFBRs) using the 238U-239Pu and the 232Th-233U fuel cycles, for LMFBR converters with the 232Th-239Pu fuel cycle, for thermal CANDU breeders and light water breeder reactors using the 232Th-233U fuel cycle, including a 20% denatured CANDU breeder, and for a one-cycle thermal 232Th-239Pu converter. The LWR or CANDU using the throw-away fuel cycle produces the most alpha waste, but the alpha waste, which is due mainly to plutonium, can be greatly reduced by recycling plutonium and uranium. The LMFBR produces still less alpha waste, and, in conjunction with LWRs or CANDUs, minimizes the total inventory of plutonium. Especially if a proliferation-resistant reprocessing scheme is used, the mixed LMFBR/LWR or CANDU economy will greatly reduce the proliferation hazard relative to the throwaway fuel cycle. Recycle of actinide waste in LMFBRs will nearly eliminate the alpha activity of the waste, but will complicate fuel fabrication.