ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
Robert P. Schuman
Nuclear Technology | Volume 49 | Number 2 | July 1980 | Pages 223-232
Nuclear Fuel Cycle | Fuel Cycle | doi.org/10.13182/NT80-A32485
Articles are hosted by Taylor and Francis Online.
There has been considerable controversy concerning the alpha waste and the proliferation hazards of breeder reactors and chemical reprocessing. In order to compare the hazards of different fuel cycles, calculations of alpha waste production and fuel composition have been made for 235U-burning light water reactors (LWRs) and Canadian Deuterium Uranium (CANDU) natural uranium, heavy water reactors using the throw-away fuel cycle, for LWRs with plutonium and uranium recycle, for liquid-metal fast breeder reactors (LMFBRs) using the 238U-239Pu and the 232Th-233U fuel cycles, for LMFBR converters with the 232Th-239Pu fuel cycle, for thermal CANDU breeders and light water breeder reactors using the 232Th-233U fuel cycle, including a 20% denatured CANDU breeder, and for a one-cycle thermal 232Th-239Pu converter. The LWR or CANDU using the throw-away fuel cycle produces the most alpha waste, but the alpha waste, which is due mainly to plutonium, can be greatly reduced by recycling plutonium and uranium. The LMFBR produces still less alpha waste, and, in conjunction with LWRs or CANDUs, minimizes the total inventory of plutonium. Especially if a proliferation-resistant reprocessing scheme is used, the mixed LMFBR/LWR or CANDU economy will greatly reduce the proliferation hazard relative to the throwaway fuel cycle. Recycle of actinide waste in LMFBRs will nearly eliminate the alpha activity of the waste, but will complicate fuel fabrication.