ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
C. C. Chapman, J. L. Buelt
Nuclear Technology | Volume 49 | Number 2 | July 1980 | Pages 196-208
Nuclear Fuel Cycle | Fuel Cycle | doi.org/10.13182/NT80-A32482
Articles are hosted by Taylor and Francis Online.
Vitrification tests in a continuous ceramic-lined melter have been completed with simulated radioactive wastes typical of those existing at the Savannah River Laboratory and at U.S. Department of Energy’s Hanford Laboratory. The results of these experiments suggest that immobilization of radioactive waste by vitrification is a promising approach for nuclear waste management. Process rates ranging from 25 to 160 kg/h were observed for simulated powdered waste glasses in the liquid-fed continuous melter. Entrapment of gas in glass bubbles or foaming at the chemical reaction layer caused a marked decrease in the processing rate. Several chemical blends were tested to assess their meltability and susceptibility to foaming. Foaming at the reaction layer was avoided in all but one of eight chemical blends. Differences in the amount of powder accumulated above the molten glass and the subsequent meltdown times strongly indicated that major variations in the meltability existed between the various chemical blends. Prototypic sized canisters (0.4, 0.61, and 0.91 m in diameter and 2.9 m tall) were filled and examined. Canisters were filled at an average rate of 76 to 93 kg/h while standing in air. The homogeneous glass product filled the canisters except for some rippled gaps at the canister wall. Gaps up to 6.4 mm were found. Unless, the radioactive decay heat exceeds the concentrations in existing wastes by a factor of 10 or more, the gaps are believed to be acceptable.