ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Andreas Pritzker, Jrg Gassmann
Nuclear Technology | Volume 48 | Number 3 | May 1980 | Pages 289-297
Technical Paper | Radioactive Waste | doi.org/10.13182/NT80-A32475
Articles are hosted by Taylor and Francis Online.
A method has been developed that is based on simplified reliability models and that allows us to estimate the risk of nuclide release from underground nuclear waste repositories. The prototype repository is treated as a combination of geological and man-made barriers. Risk depends on time and is expressed as failure probability of the barrier system for all possible initiating events, multiplied by the inventory to be released. The results include, for each nuclide, the time and amount of the maximum probable discharge rate, which can be used in a biosphere transport model. They also illustrate the effectiveness of single barriers in the barrier system, and therefore allow a preselection among alternative barrier concepts, barrier qualities, and repository sites. The probabilistic failure models for the single barriers and the entire barrier system depend on only a few parameters; therefore, the application of the method is fast and inexpensive. It has to be stressed, however, that this simple method cannot replace more detailed and sophisticated risk studies, but allows concentrating them on preselected repository concepts. It therefore represents a useful tool in the early design and site evaluation phase for all kinds of repositories and waste types. Its usefulness has been demonstrated by performing several case studies with the computer program WRISK on some typical nuclides in high level waste, bearing in mind that for a repository concept all nuclides of possible importance should be considered.