ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Vincent P. Manno
Nuclear Technology | Volume 48 | Number 3 | May 1980 | Pages 281-288
Technical Paper | Fuel | doi.org/10.13182/NT80-A32474
Articles are hosted by Taylor and Francis Online.
The current regulatory requirement that peak cladding temperatures (PCTs) never exceed 1204°C (2200°F) at any time during a loss-of-coolant accident (LOCA) is frequently the most limiting factor in setting core peaking factor limits. Of the many plant specific characteristics involved in predicting a fuel rod’s thermal response to a LOCA, the containment or “back” pressure plays a significant role, especially in pressure suppression pressurized water reactor (PWR) containments. The back pressure effect is studied by comparing the predicted PCT histories at back pressure levels of 138, 155, 172, and 207 kN/m2 (20, 22.5, 25.0, and 30 psia). A typical four-loop PWR with 15 × 15 fuel assemblies is analyzed. The analysis is performed using an in-house LOCA code named HEATUP-R/AEP, which calculates fuel thermal response during core reflood. In addition to temperature, the reflood rates, exit qualities, and cladding oxidation rates are studied. Results show significant increases in PCTs at lower pressure due to enhanced steam binding in the coolant loops.