ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
Paul Sasa, August W. Cronenberg+, Michael G. Stevenson
Nuclear Technology | Volume 48 | Number 3 | May 1980 | Pages 233-250
Technical Paper | Reactor Siting | doi.org/10.13182/NT80-A32470
Articles are hosted by Taylor and Francis Online.
One aspect of nuclear reactor safety assessment is a prediction of fuel behavior associated with postulated overheating events, which includes an assessment of the role of fission product inventory, contained within irradiated fuel elements, on fuel relocation potential. In general, the gaseous fission products, such as xenon and krypton, have been considered the most likely candidates for fuel relocation. However, the fissioning of UO2 fuel in both a fast and slow neutron spectrum also results in the generation of a significant quantity of such metallic fission products as barium, palladium, molybdenum, and other metal species. Metallurgical analysis of irradiated fuel indicates that such metals aggregate into inclusions found throughout the fuel matrix. During normal reactor operation, such metallic inclusions are in a solid state, but at the elevated temperatures expected for overheating accident transients, such inclusions may tend to volatilize, contributing to fuel motion. This paper involves an assessment of effect of such metallic fission product inclusions on fuel motion potential for accident analysis and is the first known attempt at such an assessment. To assess this potential, two limiting calculational assessments were made. Results indicate that if the inclusion constituents are assumed to be segregated elementally, then the presence of the highly volatile species such as antimony, palladium, and iron can result in an estimated 30% expansion just prior to fuel vaporization. However, under the more probable assumption of complete miscibility of constituents, the effect of metallic inclusion vaporization would be of little consequence to fuel motion.