ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—April through June
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from April through May 2024.
Stay tuned for the top stories from the rest of the past year.
Robert Zboray, Wilhelmus J. M. de Kruijf, Tim H. J. J. van der Hagen, Hugo van Dam
Nuclear Technology | Volume 136 | Number 3 | December 2001 | Pages 301-314
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT01-A3247
Articles are hosted by Taylor and Francis Online.
Linear stability analysis of a natural-circulation boiling water reactor (BWR) and the underlying thermal-hydraulic subsystem is performed using a reduced-order BWR dynamic model. The root-locus method is used to examine the stability of the system. The relation between the poles of the system and the physical processes causing the instabilities is investigated. For a natural-circulation thermal-hydraulic system, the two types of instabilities (type-I and type-II oscillations) can clearly be attributed to the dynamics of different types of pressure drops. However, it is not possible to associate these instability types with certain poles of the system.The root loci of a reactor with weak void reactivity feedback and those of the thermal-hydraulic system behave similarly: The same pole pair remains the least stable one as the operating conditions move from the type-I instability region to the type-II region. In the case of a reactor with strong void reactivity feedback, an exchange in the stability of two pole pairs is found: The least stable pole pair in the type-II region is not the same as in the type-I region.