ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Robert Zboray, Wilhelmus J. M. de Kruijf, Tim H. J. J. van der Hagen, Hugo van Dam
Nuclear Technology | Volume 136 | Number 3 | December 2001 | Pages 301-314
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT01-A3247
Articles are hosted by Taylor and Francis Online.
Linear stability analysis of a natural-circulation boiling water reactor (BWR) and the underlying thermal-hydraulic subsystem is performed using a reduced-order BWR dynamic model. The root-locus method is used to examine the stability of the system. The relation between the poles of the system and the physical processes causing the instabilities is investigated. For a natural-circulation thermal-hydraulic system, the two types of instabilities (type-I and type-II oscillations) can clearly be attributed to the dynamics of different types of pressure drops. However, it is not possible to associate these instability types with certain poles of the system.The root loci of a reactor with weak void reactivity feedback and those of the thermal-hydraulic system behave similarly: The same pole pair remains the least stable one as the operating conditions move from the type-I instability region to the type-II region. In the case of a reactor with strong void reactivity feedback, an exchange in the stability of two pole pairs is found: The least stable pole pair in the type-II region is not the same as in the type-I region.