ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Thomas K. S. Liang, Huan-Jen Hung, Chin-Jang Chang
Nuclear Technology | Volume 136 | Number 3 | December 2001 | Pages 292-300
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT01-A3246
Articles are hosted by Taylor and Francis Online.
With the consideration of mass unbalance, coolant shrinking, and compressibility, a model for reactor coolant leakage evaluation has been developed to quantify on-line the system leakage rate with conventional system measurements, regardless of where the leak occurs. This model has been derived from the system of total continuity, and it divides the reactor coolant system (RCS) into two regions, namely, the saturated and subcooled regions. The pressurizer is considered as a saturated region, and the remaining part of the RCS is regarded as a subcooled region. Taking the on-line measurements of the RCS including the RCS pressure, temperature, pressurizer water level, and charging and letdown flow rates, this model can directly evaluate on-line the RCS leakage rate. It is noted that this model is applicable only if the RCS remains subcooled. To verify the applicability of this model, data generated by RELAP5/MOD3 simulation and experimental measurements from the Institute of Nuclear Energy Research, Taiwan, Integral System Test Facility were adopted to assess this model. With further on-line verification against the Maanshan training simulator, this model was finally delivered to the Maanshan nuclear power plant (a three-looped Westinghouse pressurized water reactor) to assist the operator training and on-line evaluation of the RCS leakage rate. The smallest amount of leak flow that can be detected by the ROCK model is 3 gal/min.