ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Bernard L. Cohen
Nuclear Technology | Volume 48 | Number 1 | April 1980 | Pages 63-69
Technical Paper | Radioactive Waste | doi.org/10.13182/NT80-A32448
Articles are hosted by Taylor and Francis Online.
The several water intrusion scenario studies in the recent literature are all quite similar and may be easily understood if used to estimate the total number of eventual cancers per unit of energy generated, including their sensitivity to input parameters. However, these studies are grossly overpessimistic in several aspects of the problem, especially in using leach rate data from highly unrealistic experimental situations, and in ignoring geochemical considerations in both leaching and in transport. It is concluded that it is reasonable to expect removal and transport for an atom of buried waste to be similar to that for an atom of average rock. Under that assumption, the leach rate can be estimated from the chemical compositions of rock and of groundwater, coupled with the water flow through aquifers. The result (excluding 238U) is 0.0008 eventual cancer/GW(electric)-yr. This treatment would be invalidated if the waste were released through fractures in the rock induced by the emplacement operations or by heat. If such fractures cannot be discounted, total reliance must be on leach resistance.