ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
M. Coquerelle, C. T. Walker
Nuclear Technology | Volume 48 | Number 1 | April 1980 | Pages 43-53
Technical Paper | Fuel | doi.org/10.13182/NT80-A32446
Articles are hosted by Taylor and Francis Online.
Mixed carbide, carbonitride, and nitride fuels have been irradiated in DFR and Rapsodie to a maximum burnup of 7.8 at.% at a maximum linear power of 135 kW·m−1. At low burnup, xenon release from helium-bonded fuels was found to be dependent on the chemical composition of the fuel Release was greatest from carbide (75%) and least from nitride fuels (35%). At medium burnup, improved gap conductance led to a fall in the fuel centerline temperature and consequently a decrease in gas release. For nitride and carbonitride fuels, over 75% of the retained fission gas was contained in bubbles (<1 µm in diameter) and in the fuel matrix. For all three fuels, xenon release from the outer unrestructured region of the fuel was <15%, whereas release from the central porous region was 50% or more. In the restructured region, gas was released to the plenum by way of interconnected pores. Gas in pores contained proportionally more krypton than the bonded gas, and consequently, it is proposed that atomic diffusion is the principal mechanism of gas transport within the fuel.