ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
P. Silvennoinen, T. Vieno, J. Vira
Nuclear Technology | Volume 48 | Number 1 | April 1980 | Pages 34-42
Technical Paper | Fuel Cycle | doi.org/10.13182/NT80-A32445
Articles are hosted by Taylor and Francis Online.
A technique has been devised to combine multiple criteria in fuel cycle optimization. Besides the conventional economic optimum, the model comprises the objectives of minimizing the economic risk as well as the proliferation hazard in the light water reactor (LWR) fuel cycle. Based on a material flow model, objective functions are formulated in a form amenable to linear programming. The scheme commences with a single-criterion stage, where the three solutions and suboptimal strategies obtained span the domain of feasible multigoal solutions. The multigoal optimum is searched by means of fuzzy optimization techniques that are eventually reduced again to linear programming. The method is applied to a reference nuclear power program. In this case, the economic optimum is found to motivate plutonium recycle in the LWR. The sole minimization of the proliferation risk corresponds to recycling the uranium only. Reprocessing and plutonium utilization should take place in a more resistant system. Minimization of economic risks would in this case lead to the once-through cycle. The combination of all the three criteria in the multigoal optimum is achieved by a recycle strategy where the recycle loadings are batched and scheduled to take place in a discontinuous manner. A substantial reduction of the proliferation risk can be claimed at an economic penalty that would be on the order of 10 to 15% of the fuel cycle costs.