ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
Magdi M. H. Ragheb, Gregory A. Moses, Charles W. Maynard
Nuclear Technology | Volume 48 | Number 1 | April 1980 | Pages 16-33
Technical Paper | Fuel Cycle | doi.org/10.13182/NT80-A32444
Articles are hosted by Taylor and Francis Online.
Pellet and coupled pellet-blanket time-integrated neutronics and photonics calculations are reported for a representative low-gain (25), low-compression (deuterium-tritium core ρr = 9.4 kg/m2) pellet design for an electron beam fusion reactor. Tungsten, lead, and natural uranium are compared as pusher-tamper materials. In the three cases, neutron balances show that neutron multiplication in the pellet compensates for the energy losses and spectral softening due to neutron interactions. Fissile breeding cannot be achieved in the natural uranium case, since the fission reaction predominates. Substantive additional energy can be obtained (∼5.5 MeV/source neutron) in the pellet if natural uranium is used as the tamper material. Neutron and gamma spectra from the pellet micro explosions are given. Natural uranium, tungsten, and lead cause 14, 7, and 4% neutron multiplication, respectively. Compared to the case where a pure 14.1-MeV source is used, the spectra for the lead and tungsten pellets lead to almost the same values of breeding and heating rates. However, these are apportioned differently between the 7Li(n,α) and 7Li(n,n’α) reactions and spatial positions in the blanket. The atomic displacements and the gas production per unit of thermal power produced at the first wall are substantially reduced in the natural uranium case. Natural uranium as a tamper material leads to 8% higher tritium breeding and a 39% increase in energy production compared to the tungsten case. Per unit of energy produced, it leads to 27% less displacement damage and 30%) less hydrogen and helium production than the tungsten pellet case. For larger ρr values, these effects may be more pronounced. These results indicate that longer wall lifetimes may be obtained by neutron spectrum softening in the pellet without affecting the breeding and heat production in the blanket.