ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
R. D. Gasser, W. T. Pratt
Nuclear Technology | Volume 47 | Number 2 | February 1980 | Pages 282-307
Technical Paper | Reactor Siting | doi.org/10.13182/NT80-A32433
Articles are hosted by Taylor and Francis Online.
An assessment is made of the containment margin available in the Fast Flux Test Facility to mitigate the consequences of a postulated failure of in-vessel post-accident heat removal following a hypothetical core disruptive accident. The consequences of a number of assumed meltdown configurations (both in-vessel and ex-vessel) are assessed using the CACECO (CAvity, CEll, COntainment) containment analysis computer code together with currently available melt front penetration models. The sensitivity of the accident scenarios to a number of crucial assumptions is established by scoping studies. It is concluded from both the in-vessel and ex-vessel analyses that sodium vapor combustion is a major source of reactor containment building (RCB) pressurization. The conditions (a combination of sodiumconcrete reaction, pool size, and decay heat level) that most rapidly bring the sodium to boiling, together with those that enhance mass transfer of sodium vapor to the RCB, are the ones that most significantly affect the pressure response.