ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Albert Kreuser, Jörg Peschke
Nuclear Technology | Volume 136 | Number 3 | December 2001 | Pages 255-260
Technical Paper | Reactor Safety | doi.org/10.13182/NT01-A3243
Articles are hosted by Taylor and Francis Online.
The quantification of common-cause failures (CCFs) is often connected with uncertainties in how to interpret observed CCF events and with how far they are applicable to the specific group of components in question. A method has been developed that allows consideration of these kinds of uncertainties on the basis of a modification of the Binomial-Failure-Rate model. The quantification of interpretation uncertainties by means of interpretation alternatives is discussed as well as their effects on the estimation of the coupling parameter of the underlying CCF model. The estimation of the coupling parameter under consideration of the aforementioned uncertainties is performed by a Bayesian approach. To facilitate the specification of interpretation uncertainties, a default proposal of the interpretation vector is automatically generated on the basis of component fault states gained by expert judgment. Modification of the default vector is possible depending on engineering judgment of technical or operational differences between the observed and the target group of components.