ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
Valentin Casal
Nuclear Technology | Volume 47 | Number 1 | January 1980 | Pages 153-162
Technical Paper | Fuel | doi.org/10.13182/NT80-A32418
Articles are hosted by Taylor and Francis Online.
Investigations of the thermodynamic behavior of reactor fuel elements require out-of-pile experiments to be carried out on fuel element mockups made up of electrical heater rods. The results of these experiments depend strongly on the similarity of thermodynamic behavior between heater rods applied and nuclear fuel rods to be simulated. Typical requirements for the heater rods that simulate the nuclear fuel rods of interest are, for example, heat flux density and the associated heat flux density distribution in case of nonuniform coolant conditions and heat capacity. Because of the various modes of heat production in nuclear fuel rods, electrically heated rods in experiments are able to only partially meet these requirements. A type I heater with a nickel-chromium conductor, maximum rod power up to 340 W/cm at cladding temperatures up to 1200 K, and a type II heater with a tantalum-tungsten conductor, rod powers up to 1000 W/cm at cladding temperatures of 1200 K, were examined experimentally in a liquid sodium flow and showed lifetimes up to 10 h and more. They can be fabricated with different geometrical dimensions (e.g., diameters, heated and unheated lengths) and varying axial heat production.