ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
Shu-Chien Yung, Norman P. Wilburn
Nuclear Technology | Volume 47 | Number 1 | January 1980 | Pages 23-38
Technical Paper | Reactor | doi.org/10.13182/NT80-A32409
Articles are hosted by Taylor and Francis Online.
Intrasubassembly incoherencies affecting the fuel pin failure pattern within a fast test reactor (FTR) subassembly during an unprotected transient overpower/hypothetical core disruptive accident have been investigated using the COBRA-III/MELT code. Two dominant intrasubassembly incoherencies in an FTR subassembly were studied, namely, (a) the hydraulic effect, or the variation in pin-power-to-effective-coolant ratio between pins in the inner region and those in the outer region of the sub-assembly, and (b) the power skew, or variation in pinwise power density for pins throughout the subassembly. The hydraulic effect study concluded that a one-pin representation as used in SAS3A and MELT-IIIA does not represent the fuel pin failure characteristic of any pin in the inner or outer region of the subassembly, but only the failure characteristic of some hypothetical “average” pin, which generally fails much later than most of the pins that actually would fail in the subassembly during the postulated accident. From the power-skew study, it was found that the domain of fuel pin failure times is further widened by the power-skew incoherency. A widened domain of failure times can alleviate molten fuel/coolant interaction by not squirting molten fuel into all coolant subchannels simultaneously. The power skew also produces an eccentric failure pattern within the subassembly that reduces the possibility of a complete fuel blockage.