ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Shu-Chien Yung, Norman P. Wilburn
Nuclear Technology | Volume 47 | Number 1 | January 1980 | Pages 23-38
Technical Paper | Reactor | doi.org/10.13182/NT80-A32409
Articles are hosted by Taylor and Francis Online.
Intrasubassembly incoherencies affecting the fuel pin failure pattern within a fast test reactor (FTR) subassembly during an unprotected transient overpower/hypothetical core disruptive accident have been investigated using the COBRA-III/MELT code. Two dominant intrasubassembly incoherencies in an FTR subassembly were studied, namely, (a) the hydraulic effect, or the variation in pin-power-to-effective-coolant ratio between pins in the inner region and those in the outer region of the sub-assembly, and (b) the power skew, or variation in pinwise power density for pins throughout the subassembly. The hydraulic effect study concluded that a one-pin representation as used in SAS3A and MELT-IIIA does not represent the fuel pin failure characteristic of any pin in the inner or outer region of the subassembly, but only the failure characteristic of some hypothetical “average” pin, which generally fails much later than most of the pins that actually would fail in the subassembly during the postulated accident. From the power-skew study, it was found that the domain of fuel pin failure times is further widened by the power-skew incoherency. A widened domain of failure times can alleviate molten fuel/coolant interaction by not squirting molten fuel into all coolant subchannels simultaneously. The power skew also produces an eccentric failure pattern within the subassembly that reduces the possibility of a complete fuel blockage.