ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
F. M. Sider, R. A. Matzie
Nuclear Technology | Volume 47 | Number 3 | March 1980 | Pages 444-450
Technical Paper | Fuel Cycle | doi.org/10.13182/NT80-A32398
Articles are hosted by Taylor and Francis Online.
The spectral shift controlled reactor (SSCR) controls excess core reactivity during an operating cycle through the use of variable heavy water concentrations in the moderator. With heavy water in the coolant, the neutron spectrum is shifted to higher energy levels, thus increasing fertile conversion. In addition, since heavy water obviates the need for soluble boron, neutron losses to control poison are eliminated. As a result, better resource utilization is obtained in the SSCR employing plutonium fuel cycles compared to similarly fueled pressurized water reactors (PWRs). The SSCR, however, is not competitive with the PWR due to higher capital costs, operation and maintenance costs, and the heavy water costs, which outweigh the fuel cycle cost savings. The SSCR may become an attractive alternative to the PWR if uranium prices increase substantially.