ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Update on Zaporizhzhia
Repairs have reportedly started to restore off-site power to Ukraine’s Zaporizhzhia nuclear power plant. About a month ago, the site lost connection to the grid for the 10th time during the Russia-Ukraine military conflict, according to Rafael Mariano Grossi, director general of the International Atomic Energy Agency.
F. A. Means, R. S. Rodliffe, K. Harding
Nuclear Technology | Volume 47 | Number 3 | March 1980 | Pages 385-396
Technical Paper | Reactor | doi.org/10.13182/NT80-A32392
Articles are hosted by Taylor and Francis Online.
Equipment for on-line counting and sizing of particles has been used to sample coolant from the primary circuit of a water reactor (the Winfrith steam generating heavy water reactor). The particle size distribution is compared with a determination by electron microscopic examination of a filter sample and is shown to be in good agreement. The technique allows transients in coolant-borne particle concentrations to be sufficiently resolved for analysis in terms of postulated particle deposition and resuspension behavior. The deposition behavior is found to be describable by a first-order rate process with rate constants smaller than those that would be predicted from mass transfer considerations. It is concluded that deposition cannot be limited by mass transfer alone.