ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
R. W. Terhune, H. D. Glenn, D. E. Burton, H. L. McKague, J. T. Rambo
Nuclear Technology | Volume 46 | Number 1 | November 1979 | Pages 159-169
Technical Paper | Nuclear Explosive | doi.org/10.13182/NT79-A32388
Articles are hosted by Taylor and Francis Online.
On December 18, 1970, Baneberry, a 42-TJ (10-kt) nuclear device, was detonated at a depth of 278 m in hole U8d at the Nevada Test Site. A shock-induced fissure near ground zero opened and vented radioactive gases and debris into the atmosphere. Calculational results describe the sequence of dynamic phenomena that very likely produced the vent. The calculations predict the experimentally observed surface motion and long positive-velocity pulse. The surface fissure through which the material vented is approximately the same radial distance from ground zero as the maximum horizontal displacement is calculated to be. Also, the calculations indicate an explosive-induced extension of the Baneberry fault to the surface. This extension was observed in pictures of the surface motion and later confirmed by postshot on-site inspection. The final calculated cavity radius is very close to the measured Baneberry cavity radius. Finally, the calculations indicate that an open fracture path was generated that runs from the cavity to the Baneberry fault, up the fault to the spall region, and then vertically to the surface. This vent path predicted by the calculations is roughly consistent with the vent path found from the radioactivity in postshot drill holes. The extensions in computational capabilities in this work advance the state-of-the-art for numerical simulation of the containment aspects of underground nuclear tests.