ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
James F. Davis, Richard S. H. Mah, William F. Stevens, Balabhadra Misra, Victor A. Maroni
Nuclear Technology | Volume 46 | Number 1 | November 1979 | Pages 149-158
Technical Paper | ISotopes Separation | doi.org/10.13182/NT79-A32387
Articles are hosted by Taylor and Francis Online.
A control scheme is proposed based on our analysis of the disturbances expected during normal operation of the lead column in the fuel enrichment distillation cascade for a near-term tokamak fusion reactor fuel cycle. The primary objective of this control scheme is to minimize both the time and the amount that the atom percent protium in the bottoms product is above a setpoint level. As a secondary objective, distillate stream flow and composition fluctuations should be minimized to avoid downstream operational and control problems without requiring intermediate storage. A fixed material balance control scheme was found to be satisfactory for meeting the control requirements of this system. Because the concentration of protium in the bottoms product (the controlled variable) was relatively small, the distillate stream composition and the tritium/deuterium ratio in the bottoms stream proved to be essentially independent of the choice of controller parameters. This insensitivity permitted the controller parameters to be chosen solely on the basis of the primary objective and led to a high gain setting and low reset value for the controller. With the provision of a bottoms storage to dampen out the effect of oscillatory response, these controller settings minimized the overshoot and produced an averaged protium concentration in the bottoms very close to the setpoint level