ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
T. P. Toepker, J. N. Anno
Nuclear Technology | Volume 46 | Number 1 | November 1979 | Pages 127-133
Technical Paper | Material | doi.org/10.13182/NT79-A32385
Articles are hosted by Taylor and Francis Online.
A Type 304 stainless-steel vacuum system has been designed and constructed to study radiation-induced outgassing when this material is exposed to 60Co gamma radiation. An analytical model has been developed that predicts the outgassing from Type 304 stainless steel to be 5 X 10-10 Paℓ/cm2 . s per Mrad/h. Experiments determined the value for Type 304 stainless steel after bakeout at 300°C to be (1.03 ± 0.58) X 10-9 Pa ℓ/cm2 s per Mrad/h, in fair agreement with the analytical model predictions. Studies on thermally induced outgassing from Type 304 stainless steel showed that after bakeout at temperature T*, thermal outgassing ∆ obeys the relationship ∆ = ∆0 exp(∼Q/RT), where both the constant ∆0 and the average desorption energy Q are functions of T*. Water vapor and hydrogen were the principal residual gases in a Type 304 stainless-steel vacuum system, with hydrogen being dominant at low pressures after bakeout.