ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
Nuclear Technology | Volume 46 | Number 1 | November 1979 | Pages 82-97
Technical Paper | Fuel Cycle | doi.org/10.13182/NT79-A32381
Articles are hosted by Taylor and Francis Online.
A sensitivity analysis system is developed for assessing the economic implications of uncertainties in nuclear data and related computational methods for light water power reactors. Results of the sensitivity analysis indicate directions for worthwhile improvements in data and methods. Benefits from improvements in data and methods are related to reduction of margins provided by designers to ensure meeting reactor and fuel objectives. The sensitivity analysis system relates costs to uncertainties in nuclear data and methods by two sequences of operations broken at the few-group data level. The first determines the sensitivity of reactor fuel cycle cost to uncertainties in few-group microscopic cross sections. Then, for important cases, further analysis relates few-energy-group cell-averaged microscopic cross sections to uncertainties in basic nuclear data and in related computational methods. Sensitivity analyses are carried out using the batch depletion code FASTCELL, the core analysis code FASTCORE, and the reactor cost code COSTR. FASTCELL depletes a cell using methods comparable to industry cell codes except for a few-group treatment of cell flux distribution. FASTCORE is used with the Haling strategy of fixed power sharing among batches in the core. COSTR computes costs using components and techniques as in industry costing codes, except that COSTR uses fixed payment schedules. Sensitivity analyses are carried out for large commercial boiling and pressurized water reactors. Each few-group nuclear parameter is changed, and initial enrichment is also changed so as to keep the end-of-cycle core multiplication factor unchanged, i.e., to preserve cycle time at the demand power. Sensitivities of eqilibrium fuel cycle cost are determined with respect to ∼300 few-group nuclear parameters, both for a normal fuel cycle and for a throwaway fuel cycle. Particularly large dollar implications are found for thermal and resonance range cross sections in fissile and fertile materials. Sensitivities constrained by adjustment of fission neutron yield so as to preserve agreement with zero exposure integral data also are computed.