ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Hyoung Tae Kim, Hee Cheon No
Nuclear Technology | Volume 136 | Number 2 | November 2001 | Pages 169-185
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT01-A3236
Articles are hosted by Taylor and Francis Online.
An integral response scaling method for reduced-height test facilities is described and validated for the local and the integral phenomena using the RELAP5 thermal-hydraulic code. In the present schematic scaling methodology, the scaling laws are generated from four scaling analyses: three-dimensional differential equation-based scaling analysis, one-dimensional differential equation-based scaling analysis, component-based scaling analysis, and overall integral scaling analysis. Through use of integral response function, scaling parameters related to four types of requirements are identified: time scaling, initial-condition scaling, transient scaling, and bifurcation-phenomena scaling requirements. In the present scaling method, flow velocities in the vertical channel and at break locations of the scaled-down model can be preserved setting up the scaling as R = lR. The significance of the velocity preservation in the reduced-height facility is demonstrated by the RELAP5 code.To validate the present scaling method, similarity criteria from the integral response scaling method are applied to the scaled-down model of the Korea Standard Nuclear Power Plant simulating core boil-off process during midloop operation. The scaled-down model is basically developed with the length and area scales of 1/5 and 1/100, respectively. The integral simulation and local calculations for pot-boiling, blowdown, heat transfer in the steam generator, and off-take are conducted for a loss of RHR during the midloop operation to show the preservation of the similarity criteria using RELAP5.It turns out that the scaled-down model based on the present scaling method maintains well the similarity of the nondimensional parameters for the local phenomena. Furthermore, the integral simulation indicates that there are no noteworthy differences in the general trends between the prototype and scaled models.