ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
A. Segev, R. E. Henry, S. G. Bankoff
Nuclear Technology | Volume 46 | Number 3 | December 1979 | Pages 482-492
Technical Paper | Nuclear Power Reactor Safety / Reactor | doi.org/10.13182/NT79-A32356
Articles are hosted by Taylor and Francis Online.
Shock tube experiments with a variety of liquids have been conducted in which large pressures were obtained for systems of water-Wood’s metal, butanol-Wood’s metal, and water-molten salt. With the water-Wood’s metal system, three separate regions were observed. When the hot liquid temperature was below 210°C (which can be identified as the spontaneous nucleation temperature), no thermal interaction occurred, and the cold liquid column only bounced if vapor were present initially (region A). When the hot liquid temperature was greater than the spontaneous nucleation temperature but the contact interface temperature was less than this value (region B), the low rate of vaporization resulted in bouncing of the liquid column, which in turn produced high pressures on the order of the theoretical “water hammer” pressure. Those hydrodynamic pressures are larger than the vapor pressure corresponding to the bulk temperature of the hot liquid and larger than the maximum pressure that may be generated from single-phase pressurization. The third region, observed when the hot liquid temperature was above the spontaneous nucleation temperature upon contact (region C), resulted in fast production of vapor and impulses larger than the theoretical impulse for stopping the liquid column. The mechanism for producing the high pressures in region C is a combination of hydrodynamic impact and thermal interaction. Since pressures produced in region C are also on the order of impact pressures, the only indication for thermal interaction is a considerable increase in the resulting impulse of pressure pulses with short rise time (<1.0 ms). When the initial pressure in the system was increased (by means of a thicker diaphragm), the bouncing behavior was suppressed. This was evident from the reduced number of bounces (if any at all), the low relative pressures and impulses, the temperature history, and the shape of pressure pulses. Experiments conducted with Freons and oils (mineral and silicon), which did not result in any explosive type of interaction, also fall in a high-pressure category and are in agreement with pouring experiments. As was shown in these experiments, the hydrodynamic effects may be very significant in any shock tube analyses, especially when multiple interactions are observed. However, this was not the case in the Wright et al. experiments, in which no bouncing was observed and the pressures generated on the first impact were much higher than the theoretical impact pressure. From mixing and heat transfer considerations, it is shown that a limited amount of hot liquid can transfer its energy to the cold liquid during the intermixing stage and produce the observed pressures.