ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Cheol Nam, Yong-Hwan Jeong, Youn-Ho Jung
Nuclear Technology | Volume 136 | Number 2 | November 2001 | Pages 158-168
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT01-A3235
Articles are hosted by Taylor and Francis Online.
During the last decade, the failure behavior of high-burnup fuel rods under a reactivity-initiated accident (RIA) condition has been a serious concern since fuel rod failures at low enthalpy have been observed. This has resulted in the reassessment of existing licensing criteria and failure-mode study. To address the issue, a statistics-based methodology is suggested to predict failure probability of irradiated fuel rods under an RIA. Based on RIA simulation results in the literature, a failure enthalpy correlation for an irradiated fuel rod is constructed as a function of oxide thickness, fuel burnup, and pulse width. Using the failure enthalpy correlation, a new concept of "equivalent enthalpy" is introduced to reflect the effects of the three primary factors as well as peak fuel enthalpy into a single damage parameter. Moreover, the failure distribution function with equivalent enthalpy is derived, applying a two-parameter Weibull statistical model. Finally, the sensitivity analysis is carried out to estimate the effects of burnup, corrosion, peak fuel enthalpy, pulse width, and cladding materials used.