ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Cheol Nam, Yong-Hwan Jeong, Youn-Ho Jung
Nuclear Technology | Volume 136 | Number 2 | November 2001 | Pages 158-168
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT01-A3235
Articles are hosted by Taylor and Francis Online.
During the last decade, the failure behavior of high-burnup fuel rods under a reactivity-initiated accident (RIA) condition has been a serious concern since fuel rod failures at low enthalpy have been observed. This has resulted in the reassessment of existing licensing criteria and failure-mode study. To address the issue, a statistics-based methodology is suggested to predict failure probability of irradiated fuel rods under an RIA. Based on RIA simulation results in the literature, a failure enthalpy correlation for an irradiated fuel rod is constructed as a function of oxide thickness, fuel burnup, and pulse width. Using the failure enthalpy correlation, a new concept of "equivalent enthalpy" is introduced to reflect the effects of the three primary factors as well as peak fuel enthalpy into a single damage parameter. Moreover, the failure distribution function with equivalent enthalpy is derived, applying a two-parameter Weibull statistical model. Finally, the sensitivity analysis is carried out to estimate the effects of burnup, corrosion, peak fuel enthalpy, pulse width, and cladding materials used.