ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Cheol Nam, Yong-Hwan Jeong, Youn-Ho Jung
Nuclear Technology | Volume 136 | Number 2 | November 2001 | Pages 158-168
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT01-A3235
Articles are hosted by Taylor and Francis Online.
During the last decade, the failure behavior of high-burnup fuel rods under a reactivity-initiated accident (RIA) condition has been a serious concern since fuel rod failures at low enthalpy have been observed. This has resulted in the reassessment of existing licensing criteria and failure-mode study. To address the issue, a statistics-based methodology is suggested to predict failure probability of irradiated fuel rods under an RIA. Based on RIA simulation results in the literature, a failure enthalpy correlation for an irradiated fuel rod is constructed as a function of oxide thickness, fuel burnup, and pulse width. Using the failure enthalpy correlation, a new concept of "equivalent enthalpy" is introduced to reflect the effects of the three primary factors as well as peak fuel enthalpy into a single damage parameter. Moreover, the failure distribution function with equivalent enthalpy is derived, applying a two-parameter Weibull statistical model. Finally, the sensitivity analysis is carried out to estimate the effects of burnup, corrosion, peak fuel enthalpy, pulse width, and cladding materials used.