ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
H. Kwast
Nuclear Technology | Volume 46 | Number 2 | December 1979 | Pages 234-240
Technical Paper | Nuclear Power Reactor Safety (Presented at the ENS/ANS International Meeting, Brussels, Belgium, October 16–19, 1978) / Reactor | doi.org/10.13182/NT79-A32322
Articles are hosted by Taylor and Francis Online.
Capsule irradiations have been performed on single fast reactor fuel pins in a sodium environment under simulated loss-of-coolant-flow conditions. The main objectives were to determine the thresholds, modes, and mechanisms of fuel pin failures. The parameters were canning temperature and internal pin pressure. The loss-of-coolant-flow condition was simulated by adjusting midwall canning temperatures of ∼850 and ∼1000°C. The results indicated that creep rupture is the predominant failure mechanism at canning temperatures of 1000°C and gas pressures of above 40 bars. The failure mechanism of fuel pins tested at ∼850°C and gas pressures lower than 60 bars is probably cladding strain due to differential expansion of fuel and canning.