ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
W. Schenk, A. Naoumidis
Nuclear Technology | Volume 46 | Number 2 | December 1979 | Pages 228-233
Technical Paper | Nuclear Power Reactor Safety (Presented at the ENS/ANS International Meeting, Brussels, Belgium, October 16–19, 1978) / Reactor | doi.org/10.13182/NT79-A32321
Articles are hosted by Taylor and Francis Online.
In the course of the German high-temperature gas-cooled reactor Prototype Nuclear Process Heat Safety Program, the behavior of unirradiated fuel particles as well as of irradiated fuel elements at high temperatures was investigated. Unirradiated fuel particles with different designs have been heated to temperatures of 2500°C. Different particle types showed a different high-temperature behavior. While the Biso Thorium High-Temperature Reactor (THTR) type was the most resistant one, Triso particles failed at lower temperatures because of the SiC decomposition. Whole fuel spheres with Biso particles, irradiated in a pebble-bed reactor, were also heated up to 2500°C THTR fuel elements with a burnup of 12 to 16% FIMA (120 000 to 160 000 MWd/t) showed excellent behavior up to 2400°C. At 2500°C, the particles failed in significant numbers after some hours. While rare gas nuclides and iodine were retained in the coated particles as long as the coatings remained intact, the release of some solid fission products, especially cesium, was high above 2000°C.