ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Rob P. Rechard, Lawrence C. Sanchez, Holly R. Trellue, Christine T. Stockman
Nuclear Technology | Volume 136 | Number 1 | October 2001 | Pages 99-129
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT01-3
Articles are hosted by Taylor and Francis Online.
Modeling of nuclear criticality was omitted from performance assessment calculations for the Waste Isolation Pilot Plant (WIPP), a repository for waste contaminated with transuranic radioisotopes, located in southeastern New Mexico, based on arguments of low probability and low consequence. Low-probability arguments are presented here. Guidance provided by the Environmental Protection Agency (EPA) - the regulator of WIPP - allowed either qualitative "credibility" arguments or quantitative probability estimates when screening features, events, and processes such as criticality. Although information to quantitatively evaluate the probability of a criticality event was mostly lacking, qualitatively reasoned discussion of the inability to assemble a critical configuration of fissile material was accepted by the EPA. Specifically, after disposal and prior to an inadvertent human intrusion into the repository, there is no credible mechanism to move radioisotopes (and particularly, fissile material) since only small amounts of brine enter the repository, as adequately demonstrated in calculations over the years. An inadvertent human intrusion (an event that must be considered because of safety regulations) might allow a large pressure gradient to move more brine through the repository, but there is still no credible mechanism to counteract the natural tendency of the material to disperse during transport. Unfavorable physical conditions on concentrating fissile material include low initial solid concentration of fissile material, small mass of fissile material transported over 10 000 yr, and insufficient physical compaction; unfavorable hydrologic conditions include the limited amount of brine available to transport fissile material. Unfavorable geochemical conditions on concentrating the fissile radioisotopes include lack of sufficient adsorption and water chemistry conducive to precipitation.