ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Martin Peehs, Alfred Skokan, M. Reimann
Nuclear Technology | Volume 46 | Number 2 | December 1979 | Pages 192-198
Technical Paper | Nuclear Power Reactor Safety (Presented at the ENS/ANS International Meeting, Brussels, Belgium, October 16–19, 1978) / Reactor | doi.org/10.13182/NT46-192
Articles are hosted by Taylor and Francis Online.
The temperature-dependent properties of basaltic and limestone concrete as needed for predicting “Corium” melt propagation in concrete (elongation behavior, specific heat and degradation enthalpy, thermal diffusivity, and conductivity) are determined experimentally together with the chemical and physical reactions occurring in heated concrete. The determined oxidation potential of −335 kJ/mole for molten Corium interacting with the concrete is in accordance with the observed H2 generation due to the melt internal oxidation of zirconium, chromium, and iron. The liquefaction temperatures of the different concretes investigated are ∼1300 to 1400°C. The relatively high degradation enthalpy of basaltic and limestone concrete is the reason for the barrier effect of concrete against propagating molten Corium.