ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
Guillermo D. Del Cul, Alan S. Icenhour, Darrell W. Simmons
Nuclear Technology | Volume 136 | Number 1 | October 2001 | Pages 89-98
Technical Paper | Decontamination/Decommissioning | doi.org/10.13182/NT01-A3231
Articles are hosted by Taylor and Francis Online.
The Molten Salt Reactor Experiment (MSRE) site at Oak Ridge National Laboratory is being cleaned up and remediated. The removal of ~37 kg of fissile 233U is the main activity. Of that inventory, ~23 kg has already been removed as UF6 from the piping system and chemisorbed in 25 NaF traps. This material is in temporary storage while it awaits conversion to a stable oxide. The planned recovery of ~11 kg of uranium from the fuel salt will generate another 15 to 19 NaF traps. The remaining 2 to 3 kg of uranium are present in activated charcoal beds, which are also scheduled to be removed from the reactor site. Since all of these materials (NaF traps and the uranium-laden charcoal) are not suitable for long-term storage, they will be converted to a uranium oxide (U3O8), which is suitable for long-term storage.The conversion of the MSRE material into an oxide presents unique problems, such as criticality concerns, a large radiation field caused by the daughters of 232U (an impurity isotope in the 233U), and the possible spread of the high-radiation field from the release of 220Rn gas. To overcome these problems, a novel process was conceived and developed. This process was specially tailored for providing remote operations inside a hot cell while maintaining full containment at all times to avoid the spread of contamination. This process satisfies criticality concerns, maximizes the recovery of uranium, minimizes any radiation exposure to operators, and keeps waste disposal to a minimum.