ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
Magdi M. H. Ragheb, Said I. Abdel-Khalik, Mahmoud Youssef, Charles W. Maynard
Nuclear Technology | Volume 45 | Number 2 | September 1979 | Pages 140-152
Technical Paper | Reactor | doi.org/10.13182/NT79-A32304
Articles are hosted by Taylor and Francis Online.
Three-dimensional neutronics models of the SOLASE-H fusion-fission reactor have been analyzed by Monte Carlo. In this design, light water reactor (LWR) fertile ThO2 fuel bundles are enriched in the fissile isotope 233U and then shipped for burning in the LWRs. A concept where the fertile fuel bundles constitute a lattice configuration with the moderator-multiplier material is investigated. Parametric lattice calculations as a function of the neutron moderator-multiplier to fuel volume ratio (vm/vf) in the lattice show that it is possible in such a concept to enhance the fissile nuclei production density in the fertile fuel, compared to cases where a lattice configuration is not used. This leads to shorter times to attain projected average fissile enrichments, using substantially smaller fuel inventories. Surrounding the whole reactor cavity with the neutron multiplier is found to enhance the fissile breeding in the radial blanket. Severe asymmetries in the spatial distribution of the fissile enrichment are detected and suggest the necessity of elaborate fuel irradiation and management programs in the case of a laser-driven system. The concept of a lattice configuration and the use of the whole solid angle surrounding the fusion source for neutron multiplication are recommended for adoption in future magnetic and inertial confinement fusion-fission hybrid reactor designs.