ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
J. Chao, B. B. Miki, N. E. Todreas
Nuclear Technology | Volume 45 | Number 2 | September 1979 | Pages 113-120
Technical Paper | Reactor | doi.org/10.13182/NT79-A32302
Articles are hosted by Taylor and Francis Online.
The effects on heating and tritium breeding of using different coolants and structural arrangements have been investigated for tokamak fusion reactors. Coolants considered are lithium, helium, and flibe (a molten salt, LiF-BeF2 eutectic). Structural arrangements are modeled by using four 20-cm breeding zones between a 0.5-cm-thick first wall and a 10-cm graphite reflector. Different values for the volume percent of Type 316 stainless steel are assigned in four breeding zones to represent a nonuniformly distributed structural material that satisfies various thermal-hydraulic requirements. For a 10% average volume percent stainless steel in the blanket filled with lithium, the difference in breeding ratio between having a uniform structural distribution and a slant distribution is 4%. The difference in breeding ratio where the value of albedo at the outer edge of the graphite zone is changed from 0.0 to 0.45 is 1%. Little difference in volumetric heat generation rates between using lithium and helium as coolants is observed. For a flibe-cooled blanket, the volumetric heat generation rate is higher near the first wall and lower near the reflector region than the lithium- and helium-cooled blankets. The effects on heat generation of different structural distributions and different albedos are insignificant. For values of volume percent of stainless steel in the breeding zone ranging from 5 to 15%, the breeding ratios range from 1.481 to 1.256 for lithium, 1.372 to 1.184 for helium, and 1.349 to 1.191 for flibe.