ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
J. Chao, B. B. Miki, N. E. Todreas
Nuclear Technology | Volume 45 | Number 2 | September 1979 | Pages 113-120
Technical Paper | Reactor | doi.org/10.13182/NT79-A32302
Articles are hosted by Taylor and Francis Online.
The effects on heating and tritium breeding of using different coolants and structural arrangements have been investigated for tokamak fusion reactors. Coolants considered are lithium, helium, and flibe (a molten salt, LiF-BeF2 eutectic). Structural arrangements are modeled by using four 20-cm breeding zones between a 0.5-cm-thick first wall and a 10-cm graphite reflector. Different values for the volume percent of Type 316 stainless steel are assigned in four breeding zones to represent a nonuniformly distributed structural material that satisfies various thermal-hydraulic requirements. For a 10% average volume percent stainless steel in the blanket filled with lithium, the difference in breeding ratio between having a uniform structural distribution and a slant distribution is 4%. The difference in breeding ratio where the value of albedo at the outer edge of the graphite zone is changed from 0.0 to 0.45 is 1%. Little difference in volumetric heat generation rates between using lithium and helium as coolants is observed. For a flibe-cooled blanket, the volumetric heat generation rate is higher near the first wall and lower near the reflector region than the lithium- and helium-cooled blankets. The effects on heat generation of different structural distributions and different albedos are insignificant. For values of volume percent of stainless steel in the breeding zone ranging from 5 to 15%, the breeding ratios range from 1.481 to 1.256 for lithium, 1.372 to 1.184 for helium, and 1.349 to 1.191 for flibe.