ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Boris K. Bylkin, Galina B. Davydova, Yuri A. Zverkov, Alexander V. Krayushkin, Yuri A. Neretin, Anatoly V. Nosovsky, Valery A. Seyda, Steven M. Short
Nuclear Technology | Volume 136 | Number 1 | October 2001 | Pages 76-88
Technical Paper | Decontamination/Decommissioning | doi.org/10.13182/NT01-A3230
Articles are hosted by Taylor and Francis Online.
The dismantlement of the reactor core materials and surrounding structural components is a major technical concern for those planning closure and decontamination and decommissioning of the Chernobyl Nuclear Power Plant (NPP). Specific issues include when and how dismantlement should be accomplished and what the radwaste classification of the dismantled system would be at the time it is disassembled. Whereas radiation levels and residual radiological characteristics of the majority of the plant systems are directly measured using standard radiation survey and radiochemical analysis techniques, actual measurements of reactor zone materials are not practical due to high radiation levels and inaccessibility. For these reasons, neutron transport analysis was used to estimate induced radioactivity and radiation levels in the Chernobyl NPP Unit 1 reactor core materials and structures.Analysis results suggest that the optimum period of safe storage is 90 to 100 yr for the Unit 1 reactor. For all of the reactor components except the fuel channel pipes (or pressure tubes), this will provide sufficient decay time to allow unlimited worker access during dismantlement, minimize the need for expensive remote dismantlement, and allow for the dismantled reactor components to be classified as low- or medium-level radioactive waste. The fuel channel pipes will remain classified as high-activity waste requiring remote dismantlement for hundreds of years due to the high concentration of induced 63Ni in the Zircaloy pipes.