ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
J. E. Selle, P. Angelini, R. H. Rainey, J. I. Federer, A. R. Olsen
Nuclear Technology | Volume 45 | Number 3 | October 1979 | Pages 269-286
Technical Paper | Fuel Cycle | doi.org/10.13182/NT79-A32296
Articles are hosted by Taylor and Francis Online.
The use of a gamma active radionuclide with nuclear fuel has been proposed as a way to inhibit unauthorized diversion of the fuel and thus provide proliferation deterrence. Proposed dose rate ranges have varied from small additions to increase detectability of diverted material up to large additions to provide lethal doses in a relatively short exposure time. Some of the practical aspects of incorporating spikants into nuclear fuel are examined in an attempt to identify any technically adverse consequences of their use. Selection of potential spikants was made by the application of some somewhat arbitrary radiation criteria to 64 candidate spikants followed by an analysis of the chemical and physical state of each potential spikant. As a result of this analysis, the list of candidates was narrowed to 60Co, 106Ru, and 144Ce. Following this, we investigated the practical aspects of the use of these three spikants in nuclear fuel. Among the subjects considered are dose rates available from fuel elements, fission product buildup, chemical behavior of spikants during reprocessing, and possible effects of spikants on refabrication and on the fuel properties. Neither 106Ru nor 144Ce is present in sufficient quantity to produce the maximum radiation dose rate level considered. Nonradioactive nuclides of ruthenium and cerium dilute the radioactive nuclides to 2 to 4% of the total element in the fission products 2 yr after removal from the reactor. Recycling ruthenium and cerium will result in dilution of the radionuclides even further by a buildup of stable isotopes of each of these elements. Approximately 50% of the fission product ruthenium and 3 to 5% of the cerium can be coprocessed with the fuel, while cobalt cannot be coprocessed at all. No single radionuclide was found to be preferred in all stages of reprocessing and refabrication. To provide deterrence in all stages of reprocessing and refabrication, a duplex spiking process appears necessary, in which two different spikants, 106Ru and 60Co, are used in different portions of reprocessing. The use of nominal amounts of ruthenium or cobalt as spikants is not expected to adversely affect fuel performance.