ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
J. E. Selle, P. Angelini, R. H. Rainey, J. I. Federer, A. R. Olsen
Nuclear Technology | Volume 45 | Number 3 | October 1979 | Pages 269-286
Technical Paper | Fuel Cycle | doi.org/10.13182/NT79-A32296
Articles are hosted by Taylor and Francis Online.
The use of a gamma active radionuclide with nuclear fuel has been proposed as a way to inhibit unauthorized diversion of the fuel and thus provide proliferation deterrence. Proposed dose rate ranges have varied from small additions to increase detectability of diverted material up to large additions to provide lethal doses in a relatively short exposure time. Some of the practical aspects of incorporating spikants into nuclear fuel are examined in an attempt to identify any technically adverse consequences of their use. Selection of potential spikants was made by the application of some somewhat arbitrary radiation criteria to 64 candidate spikants followed by an analysis of the chemical and physical state of each potential spikant. As a result of this analysis, the list of candidates was narrowed to 60Co, 106Ru, and 144Ce. Following this, we investigated the practical aspects of the use of these three spikants in nuclear fuel. Among the subjects considered are dose rates available from fuel elements, fission product buildup, chemical behavior of spikants during reprocessing, and possible effects of spikants on refabrication and on the fuel properties. Neither 106Ru nor 144Ce is present in sufficient quantity to produce the maximum radiation dose rate level considered. Nonradioactive nuclides of ruthenium and cerium dilute the radioactive nuclides to 2 to 4% of the total element in the fission products 2 yr after removal from the reactor. Recycling ruthenium and cerium will result in dilution of the radionuclides even further by a buildup of stable isotopes of each of these elements. Approximately 50% of the fission product ruthenium and 3 to 5% of the cerium can be coprocessed with the fuel, while cobalt cannot be coprocessed at all. No single radionuclide was found to be preferred in all stages of reprocessing and refabrication. To provide deterrence in all stages of reprocessing and refabrication, a duplex spiking process appears necessary, in which two different spikants, 106Ru and 60Co, are used in different portions of reprocessing. The use of nominal amounts of ruthenium or cobalt as spikants is not expected to adversely affect fuel performance.