ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
E. T. Cheng, C. W. Maynard, W. F. Vogelsang, A. C. Klein
Nuclear Technology | Volume 45 | Number 1 | August 1979 | Pages 77-98
Technical Paper | Reactor | doi.org/10.13182/NT79-A32287
Articles are hosted by Taylor and Francis Online.
One of the characteristics of a compact tokamak fusion reactor such as NUWMAK is high power density (∼10 MW/m3) and thus high neutron wall loading (∼5 MW/m2). The most crucial design requirements for a tokamak fusion reactor blanket and shield are (a) adequate tritium breeding ratio (>1.10), (b) high blanket energy multiplication (≥1.2), (c) adequate magnet protection, and (d) low radioactivity. The magnet protection criterion for a compact reactor is particularly essential in the inner region of the torus close to the toroidal axis because of limited space availability for shielding. A very effective shielding material such as tungsten must be used for this purpose. The design requirements have been satisfied by the selection of blanket and shielding materials as well as their zone thicknesses and heights. The nucleonic design features of the NUWMAK are as follows. A tritium breeding ratio of 1.54 is obtained. Li62Pb38 eutectic is used as the breeding and thermal energy storage material. The total nuclear heating in the blanket and shield is ∼17.2 MeV per deuterium-tritium neutron. The performance of the superconducting magnet will be satisfactory for more than 2 yr of continuous operation through the use of a 35-cm-thick tungsten shield that extends 2.5 m above the midplane on the inboard part of the torus. The radioactivity is lowered by using a titanium alloy as the structural material and large amounts of lithium lead as the blanket material. One day after shutdown, the dose rate outside the outer shield drops below 2.6 mrem/h, and it is favorable to hands-on shift maintenance.