ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
Hsiang-Shou Cheng, David J. Diamond
Nuclear Technology | Volume 45 | Number 1 | August 1979 | Pages 46-53
Technical Paper | Reactor | doi.org/10.13182/NT79-A32284
Articles are hosted by Taylor and Francis Online.
The response of boiling water reactor in-core detectors undergoing vibration has been calculated. A neutronic model based on calculating the fission activity at a detector position in a planar multibundle environment was employed. The model used eight energy groups and two-dimensional Cartesian geometry in a discrete-ordinates transport approximation. The in-core detector responses due to various detector displacements were calculated as a function of channel box corner wear with different effective in-channel voids, bypass voids, and instrument tube voids. The calculated noise was found to have a linear dependence on channel box wear. This was corroborated by measurements. An increase in in-channel voids was found to increase the noise, while an increase in bypass and instrument tube voids decreased the noise. The presence of a nearby control blade increased the noise.