ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
M. G. Seitz, P. G. Rickert, S. Fried, A. M. Friedman, M. J. Steindler
Nuclear Technology | Volume 44 | Number 2 | July 1979 | Pages 284-296
Technical Paper | Radioactive Waste | doi.org/10.13182/NT79-A32262
Articles are hosted by Taylor and Francis Online.
Nuclear waste can be disposed of in geologic repositories. To aid in assessing the suitability of geologic disposal, we have examined the interactions of trace quantities of cesium, plutonium, neptunium, and americium in aqueous solutions with rocks from formations that may be suitable for waste repositories. The results indicate that many geologic formations are barriers to the movement of these elements in flowing water. However, reactions that retard element migration are varied and do not lend themselves to simplified descriptions. In experiments with plutonium and americium, kinetics of reactions were seen to differ for each trace element and rock studied. In rock infiltration experiments with radioactive cesium, plutonium, neptunium, and americium, often most of the activity moved slowly compared to the water stream, but small quantities of the trace elements moved downstream from the main peaks of activity because of the slow reaction rates seen in static experiments, or possibly because of multiple speciation, colloid formation, movement of particles with adsorbed nuclides, or other causes. These fast-moving components of the trace elements may present a radiological hazard from a breached repository, even though they contain only a small fraction of the activity leaving the repository; therefore, detailed characteristics of nuclide migration need to be considered in the design of a nuclear waste repository.