ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—April through June
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from April through May 2024.
Stay tuned for the top stories from the rest of the past year.
Tomoyuki Uwaba, Kosuke Tanaka
Nuclear Technology | Volume 136 | Number 1 | October 2001 | Pages 14-23
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT01-A3225
Articles are hosted by Taylor and Francis Online.
To analyze the wire-wrapped fast breeder reactor (FBR) fuel pin bundle deformation under bundle-duct interaction (BDI) conditions, the Japan Nuclear Cycle Development Institute has developed the BAMBOO computer code. A three-dimensional beam element model is used in this code to calculate fuel pin bowing and cladding oval distortion, which are the dominant deformation mechanisms in a fuel pin bundle. In this work, the property of the cladding oval distortion considering the wire-pitch was evaluated experimentally and introduced in the code analysis.The BAMBOO code was validated in this study by using an out-of-pile bundle compression testing apparatus and comparing these results with the code results. It is concluded that BAMBOO reasonably predicts the pin-to-duct clearances in the compression tests by treating the cladding oval distortion as the suppression mechanism to BDI.